61 research outputs found

    Diffusion coefficients and constraints on hadronic inhomogeneities in the early universe

    Full text link
    Hadronic inhomogeneities are formed after the quark hadron phase transition. The nature of the phase transition dictates the nature of the inhomogeneities formed. Recently some scenarios of inhomogeneities have been discussed where the strange quarks are in excess over the up and down quarks. The hadronization of these quarks will give rise to a large density of hyperons and kaons in addition to the protons and neutrons which are formed after the phase transition. These unstable hyperons decay into pions, muons and their respective neutrinos. Hence the plasma during this period consists of neutrons, protons, electrons, muons and neutrinos. Due to the decay of the hyperons, the muon component of the inhomogeneities will be very high. We study the diffusion of neutrons and protons in the presence of a large number of muons immediately after the quark hadron phase transition. We find that the presence of the muons enhances the diffusion coefficient of the neutrons/protons. As the diffusion coefficient is enhanced, the inhomogeneities will decay faster in the regions where the muon density is higher. Hence smaller muon rich inhomogeneities will be completely wiped out. The decay of the hyperons will also generate muon neutrinos. Since the big bang nucleosynthesis provides constraints on the neutrino degeneracies, we revisit the effect of non zero degeneracies on the primordial elements.Comment: 20 pages 7 figures Revised version accepted for publication in European Journal of Physics

    Minimum-Weight Edge Discriminator in Hypergraphs

    Full text link
    In this paper we introduce the concept of minimum-weight edge-discriminators in hypergraphs, and study its various properties. For a hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), a function λ:VZ+{0}\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\} is said to be an {\it edge-discriminator} on H\mathcal H if vEiλ(v)>0\sum_{v\in E_i}{\lambda(v)}>0, for all hyperedges EiEE_i\in \mathcal E, and vEiλ(v)vEjλ(v)\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}, for every two distinct hyperedges Ei,EjEE_i, E_j \in \mathcal E. An {\it optimal edge-discriminator} on H\mathcal H, to be denoted by λH\lambda_\mathcal H, is an edge-discriminator on H\mathcal H satisfying vVλH(v)=minλvVλ(v)\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}, where the minimum is taken over all edge-discriminators on H\mathcal H. We prove that any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n|\mathcal E|=n, satisfies vVλH(v)n(n+1)/2\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq n(n+1)/2, and equality holds if and only if the elements of E\mathcal E are mutually disjoint. For rr-uniform hypergraphs H=(V,E)\mathcal H=(\mathcal V, \mathcal E), it follows from results on Sidon sequences that vVλH(v)Vr+1+o(Vr+1)\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1}), and the bound is attained up to a constant factor by the complete rr-uniform hypergraph. Next, we construct optimal edge-discriminators for some special hypergraphs, which include paths, cycles, and complete rr-partite hypergraphs. Finally, we show that no optimal edge-discriminator on any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n(3)|\mathcal E|=n (\geq 3), satisfies vVλH(v)=n(n+1)/21\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=n(n+1)/2-1, which, in turn, raises many other interesting combinatorial questions.Comment: 22 pages, 5 figure

    Quantification of uncertainty in a stereoscopic particle image velocimetry measurement

    Get PDF
    In Stereoscopic Particle Image Velocimetry (Stereo-PIV), the three velocity components are obtained by illuminating a planar region in the flow field and recording the region of interest using two cameras at an angle. Calibration, planar velocity estimation, and velocity reconstruction are the three essential steps involved in the process. Earlier efforts to quantify the accuracy in a Stereo-PIV measurement process have shown higher error in out of plane motion. However, a detailed analysis of the measurement uncertainty involved in a Stereo-PIV calibration-based reconstruction process has yet to be presented. This analysis provides a detailed framework to specify the uncertainty in the coefficients of the calibration mapping function and the uncertainty involved in self-calibration step for correction of the registration error. Using Taylor series expansion for uncertainty propagation the contribution of the calibration step uncertainties are combined with planar field uncertainties to predict the overall uncertainty in the reconstructed velocity components. The analysis is tested using simulated random field images and experimental vortex ring images. The results emphasize the sensitivity and interdependence of the individual uncertainties involved in each step of a Stereo-PIV measurement process

    Volumetric Particle Tracking Velocimetry (PTV) Uncertainty Quantification

    Full text link
    We introduce the first comprehensive approach to determine the uncertainty in volumetric Particle Tracking Velocimetry (PTV) measurements. Volumetric PTV is a state-of-the-art non-invasive flow measurement technique, which measures the velocity field by recording successive snapshots of the tracer particle motion using a multi-camera set-up. The measurement chain involves reconstructing the three-dimensional particle positions by a triangulation process using the calibrated camera mapping functions. The non-linear combination of the elemental error sources during the iterative self-calibration correction and particle reconstruction steps increases the complexity of the task. Here, we first estimate the uncertainty in the particle image location, which we model as a combination of the particle position estimation uncertainty and the reprojection error uncertainty. The latter is obtained by a gaussian fit to the histogram of disparity estimates within a sub-volume. Next, we determine the uncertainty in the camera calibration coefficients. As a final step the previous two uncertainties are combined using an uncertainty propagation through the volumetric reconstruction process. The uncertainty in the velocity vector is directly obtained as a function of the reconstructed particle position uncertainty. The framework is tested with synthetic vortex ring images. The results show good agreement between the predicted and the expected RMS uncertainty values. The prediction is consistent for seeding densities tested in the range of 0.01 to 0.1 particles per pixel. Finally, the methodology is also successfully validated for an experimental test case of laminar pipe flow velocity profile measurement where the predicted uncertainty is within 17% of the RMS error value

    A New Spatio-Temporal Model Exploiting Hamiltonian Equations

    Full text link
    The solutions of Hamiltonian equations are known to describe the underlying phase space of the mechanical system. In Bayesian Statistics, the only place, where the properties of solutions to the Hamiltonian equations are successfully applied, is Hamiltonian Monte Carlo. In this article, we propose a novel spatio-temporal model using a strategic modification of the Hamiltonian equations, incorporating appropriate stochasticity via Gaussian processes. The resultant sptaio-temporal process, continuously varying with time, turns out to be nonparametric, nonstationary, nonseparable and no-Gaussian. Besides, the lagged correlations tend to zero as the spatio-temporal lag tends to infinity. We investigate the theoretical properties of the new spatio-temporal process, along with its continuity and smoothness properties. Considering the Bayesian paradigm, we derive methods for complete Bayesian inference using MCMC techniques. Applications of our new model and methods to two simulation experiments and two real data sets revealed encouraging performance

    Minimum-Weight Edge Discriminators in Hypergraphs

    Get PDF
    In this paper we introduce the notion of minimum-weight edge-discriminators in hypergraphs, and study their various properties. For a hypergraph H = (V , E), a function λ : V → Z+∪{0} is said to be an edge-discriminator on H if ∑v∈Eiλ(v)\u3e0, for all hyperedges Ei ∈ E and ∑v∈Eiλ(v) ≠ ∑v∈Ejλ(v), for every two distinct hyperedges Ei,Ej, ∈ E. An optimal edge-discriminator on H, to be denoted by λH, is an edge-discriminator on H satisfying ∑v∈VλH(v) = minλ ∑v∈Vλ(v), where the minimum is taken over all edge-discriminators on H. We prove that any hypergraph H = (V , E), with |E| = m, satisfies ∑v∈VλH(v) ≤ m(m+1)/2, and the equality holds if and only if the elements of E are mutually disjoint. For r-uniform hypergraphs H = (V,E), it follows from earlier results on Sidon sequences that ∑v∈VλH(v) ≤ |V|r+1+o(|V|r+1), and the bound is attained up to a constant factor by the complete r-uniform hypergraph. Finally, we show that no optimal edge-discriminator on any hypergraph H = (V,E), with |E| = m (≥3), satisfies ∑v∈VλH(v) = m(m+1)/2−1. This shows that all integer values between m and m(m+1)/2 cannot be the weight of an optimal edge-discriminator of a hypergraph, and this raises many other interesting combinatorial questions

    Simulated Annealing Approach onto VLSI Circuit Partitioning

    Get PDF
    Decompositions of inter-connected components, to achieve modular independence, poses the major problem in VLSI circuit partitioning. This problem is intractable in nature, Solutions of these problems in computational science is possible through appropriate heuristics. Reduction of the cost that occurs due to interconnectivity between several VLSI components is referred to in this paper. Modification of results derived by classical iterative procedures with probabilistic methods is attempted. Verification has been done on ISCAS-85 benchmark circuits. The proposed design tool shows remarkable improvement results in comparison to the traditional one when applied to the standard benchmark circuits like ISCAS-85
    corecore